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Hyperspectral imaging technology for determination of
dichlorvos residue on the surface of navel orange
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A hyperspectral imaging system is developed to detect dichlorvos residue on the surface of navel orange.
After acquiring hyperspectral images of 400 navel oranges, the actual content of dichlorvos residue is
measured by gas chromatography. Optimal wavelengths are extracted using the regression coefficients
of partial least squares (PLS), and a PLS model with 12 factors is established. In the prediction set of
0.2282−11.652-mg/kg pesticide residue, the correlation coefficient and the root mean standard error are
0.8320 and 1.3416, respectively. The hyperspectral imaging technology can meet the requirement of online
fast nondestructive detection.
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The regulation of pesticide usage has become an impor-
tant human health issue because of the possibility of
contracting various diseases caused by pesticide on fruits
or vegetables in the food chain. The amount of pesti-
cide residue on products is usually measured using con-
ventional techniques such as gas chromatography (GC)
and high-performance liquid chromatography (HPLC).
The use of conventional analyses for detecting pesticide
residues in all product lines is becoming impossible be-
cause of the limitations of time and labor[1]; therefore,
utilizing these conventional analyses has been somewhat
disadvantageous. Spectroscopy technologies such as near
infrared spectroscopy and fluorescence spectroscopy, in
combination with the advance in chemometrics, have ex-
tended their uses to industrial and agricultural areas[2,3].
Such technologies have been proven useful for measur-
ing internal quality attributes such as total soluble solid
content of apple[4], sugar content in strawberry[5], cat-
echins content in tea[6,7], meat and bone meal content
in fishmeal[8], and firmness of pear[9]. However, com-
pared with the hyperspectral imaging technology, these
spectroscopic methods have a drawback because the
spectral data are acquired from a single point or from
a small portion of the tested sample. In contrast, hy-
perspectral imaging has the advantage of receiving spa-
tially distributed spectral responses at each pixel of a
fruit image. Moreover, the technology has been im-
plemented in several applications, such as determining
internal quality of strawberry[10], fecal detection on poul-
try carcasses[11], and detecting pesticide residue on navel
orange surface[12].

Navel orange, is known not only as a fresh fruit but also
as a processed product. The main aim of this letter is to
develop a hyperspectral imaging system and open up a
new nondestructive method of dichlorvos residue deter-
mination. Partial least square (PLS) models are built to
predict dichlorvos residue on the surface of navel orange
quantitatively using hyperspectral images. Based on the
regression coefficients of PLS, optimal wavelengths are
selected, and new PLS models are built.

Four hundred navel oranges were purchased from the
Nongda Market in Nanchang, Jiangxi, China. Firstly,
these navel oranges were washed and air-dried. Next, dif-
ferent concentrations of dichlorvos solutions were sprayed
on different groups of navel oranges to obtain different
concentrations of dichlorvos residue. The samples were
kept in the laboratory for 10−11 h to dry the surfaces.
Subsequently, spectra were acquired using the hyper-
spectral imaging system. Finally, dichlorvos residue on
the surfaces of samples was measured by GC (SP-6890,
Lunan Rui Hong Chemical Co., Ltd., China) the next
day.

Hyperspectral images were acquired by hyperspec-
tral imaging system (Fig. 1), composed of a line-scan
spectrograph (ImSpector, V10E, Spectra Imaging Ltd.,
Finland), a complementary metal-oxide semiconductor
(CMOS) camera (MV-D1024E-40-U2, Photonfocus AG,
Switzerland), an illumination unit with 4 halogen lamps
(50 W), and a computer. Spectrograph-measured re-
flectance spectra at a wavelength range of 400−1000
nm and exposure time adjusted to 50 ms were adopted
throughout the whole experiment. The distance be-
tween the lens and the surface of the navel orange
image was fixed at 600 mm. Before data acquisition,
the hyperspectral imaging system was corrected with a

Fig. 1. Schematic of hyperspectral imaging system. a: CMOS
camera, b: spectrograph with a standard C-mount zoom lens,
c: halogen lighting unit, d: conveyer, e: computer.
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white standard (SRT-99-100, Labsphere, Inc., USA) and
a dark reference.

The preprocessing procedures taken for the sample
were as follows. 1) Ten grams of navel orange skin were
placed in high-speed tissue crushing machine with ethyl
acetate; 2) after crushing the navel orange skin, the ma-
chine was thrice washed with approximately 30-ml ethyl
acetate; 3) the mixed solution was filtered with filter
paper; 4) the filtrate was concentrated using a rotary
evaporator until almost dry, then the residue was diluted
with acetone to 5 ml; 5) the solution was filtered with a
membrane of 0.45 µm for testing.

The amount of dichlorvos in the solution was mea-
sured by gas chromatography. The capillary column for
GC analysis was a 0.53 mm×30 m column with 1.0-µm
particles. The GC was operated under the following con-
ditions: injection volume is 1 µL; injector temperature,
flame ionized detector (FID) temperature and columm
temperature are 200, 180, and 140 ◦C, respectively; the
velocities of N2, air, and H2 are 36, 128, and 15 mL/min,
respectively. Trial measurements were performed for
each sample.

Figure 2 shows a typical chromatogram obtained un-
der the above-mentioned conditions. The peak time for
dichlorvos is approximately 3.7 min, with the dichlorvos
quantitatively determined by the peak area of the chro-
matogram. The dichlorvos content of the samples can be
precisely calculated by the linear relation of the content,
as well as the peak area between the dichlorvos of the
samples and the standard solution.

The hyperspectral images were processed using Soft-
ware ENVI. A reflection area was found and marked
in each image. To calculate the spectral reflection, a
region of interest (ROI) was defined as the pixel area ob-
tained by taking out the marked reflection area from the
total area of a navel orange in an image. The mean re-
flectance spectrum of a ROI was calculated by averaging
the spectral response of each pixel in the ROI. 400 mean
reflectance spectra were calculated, with each spectrum
including spectral information from 400 to 1000 nm.

Software Unscrambler (CAMO, Oslo, Norway) was
used for all calculations. PLS regression was performed
to develop a calibration equation from the spectra of
samples based on the spectral preprocessing technique
of multiplicative scatter correction (MSC). Model per-
formance was compared in terms of root mean standard
error of calibration (RMSEC), root mean standard error
of prediction (RMSEP), and correlation coefficient (R)

Fig. 2. Typical chromatogram of dichlorvos obtained by GC.

between the predicted and the measured values.
The dichlorvos residue measurements (n = 400) were

normally distributed around the mean (max = 12.093
mg/kg, min = 0.1972 mg/kg). The 400 samples were
ordered according to the ascending order of dichlorvos
residue measurements. From the 1st to 390th sample,
every three samples were considered as a group. The 2nd
sample of each group was chosen as the sample of the
prediction set, and the remaining samples were chosen as
samples of the calibration set. Therefore, the calibration
set included the maximum and the minimum dichlor-
vos residue measurements. Moreover, the calibration set
included 270 data and prediction set included 130 data
(Table 1). Table 1 shows the descriptive statistics for
dichlorvos residue of navel oranges determined by GC.

Figure 3 shows the mean reflectance spectra in a range
of 400–1000 nm collected from the navel oranges. Clearly,
larger noise is found at the lower (400–499 nm) and
higher (923–1000 nm) ends of the spectra dataset. There-
fore, these two spectral ranges are cut from the spectra
dataset. The spectra wavelength ranging of 500–922 nm
is discussed in the following.

Table 1. Reference Measurements and Sample
Numbers in Calibration and Prediction Sets

Set
Number of Mean Value Range

Samples (mg/kg) (mg/kg)

Calibration 270 3.1788 0.1972−12.0932

Prediction 130 3.3913 0.2282−11.6520

Fig. 3. Mean reflection spectra of navel oranges.

Fig. 4. Measured and predicted dichlorvos residues of calibra-
tion and prediction sets using 16 latent factors.
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Fig. 5. Optimal wavelengths based on the regression co-
efficients of PLS.

Fig. 6. Measured and predicted dichlorvos residues of cali-
bration and prediction set using optimal wavelengths and 12
latent factors.

The PLS calibration model was established using the
mean spectra from 270 navel oranges of the calibration
set in the spectral range consisting of 403 wavebands.
The model was validated using the mean spectra of 130
navel oranges in the prediction set. The optimal number
of latent factors used in the PLS model was 16. The mea-
sured values of pesticide residue by GC and the predicted
values resulting from PLS model are shown in Fig. 4.
The model is found to be suitable for predicting pesti-
cide residue of dichlorvos with R of 0.8760 and 0.8470
for calibration and prediction sets, respectively. RMSEC
and RMSEP are 1.1043 and 1.3028 for the calibration
and prediction sets, respectively.

Figure 5 shows the relation curve between the wave-
lengths and the regression coefficients of PLS, with the
extracted wavelengths corresponding to the highest ab-
solute values of regression coefficients in the curve in
spite of their signs. Therefore, the optimal wavelengths
were determined to be 500, 521, 528, 614, 620, 626, 639,
646, 668, 682, 696, 763, 781, 800, 815, 837, 841, 863,
907, and 915 nm. The optimal wavelengths were used
to build another PLS model between the reflectance at
these wavelengths and the measured dichlorvos residue;
the accuracy of the PLS model is shown in Fig. 6. The
performance of the model is evaluated at R, RMSEC,
and RMSEP. The R value of the calibration set is 0.8407
with RMSEC of 1.2398, and that of the prediction set is
0.8320 with RMSEP of 1.3416.

Compared with the first PLS model (with 403 wave-
bands), the second PLS model (with 20 wavelengths) has
slightly lower performance in prediction in terms of R,

RMSEC, and RMSEP; however, the number of wave-
lengths used to establish PLS model decreases to 20, with
the latent factor of 12.

The study has indicated the possibility of developing
a nondestructive technology using hyperspectral imaging
for measuring pesticide residue of dichlorvos on the sur-
face of navel orange. Two types of PLS models have
been established: one is based on the whole spectral
range (500–922 nm), including 403 wavebands and 16
latent factors, and the other is based on 20 optimal
wavelengths extracted using regression coefficients from
the PLS model and 12 latent factors. Comparison of
the two models has shown that both models determine
dichlorvos residue efficiently, although the second one has
slightly lower performance in prediction in terms of R,
RMSEC, and RMSEP. However, the second one, based
on the fewer wavelengths and latent factors, will spend
less time in calculation, which is very important in prod-
uct lines. In the prediction set of 0.2282–11.652-mg/kg
pesticides residue, the R and the root mean standard er-
ror are 0.8320 and 1.3416, respectively. The detection
limit is lower than that of GC; however, this detection
technology has the obvious advantages of quick and non-
destructive on-line detection. In addition, the detection
limit can achieve ordinary rapid detection and can be
improved in further studies. In conclusion, the exper-
imental results suggest that hyperspectral imaging can
be used to determine pesticide residues on fruit surface.
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